Géométrie - Devoir Maison

Exercice

Soit ABCD un quadrilatère du plan quelconque. Soient M_1, M_2, M_3, M_4 les quatres points tels que ABM_1 , BCM_2 , CDM_3 et DAM_4 soient isocèles rectangles, et de plus les angles orientés $\widehat{AM_1B}$, $\widehat{BM_2C}$, $\widehat{CM_3D}$, $\widehat{DM_4A}$ soient $+\pi/2$.

- 1. Notons m_1, a, b les affixes des points M_1, A, B . En considérant la rotation de centre M_1 et d'angle $+\pi/2$, exprimez la relation entre les nombres complexes $b-m_1$ et $a-m_1$.
- 2. Montrez, en comparant $m_3 m_1$ et $m_4 m_2$, que les segments $[M_1M_3]$ et $[M_2M_4]$ sont perpendiculaires et de même longueur.

Problème: Inversions du plan

On note P le plan rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) . On note P^* le plan P privé de l'origine et \mathbb{C}^* l'ensemble des nombres complexes non nuls. On fixe k un réel non nul, et on note $f: \mathbb{C}^* \to \mathbb{C}^*$,

$$f(z) = \frac{k}{\bar{z}},$$

où \bar{z} désigne le conjugué complexe de z. On note I l'application de P^* dans P^* qui à tout point M d'affixe z, associe le point M' d'affixe f(z); cette application I est appelée inversion de centre O et de puissance k.

Un cercle ou une droite passant par l'origine O mais privé de ce point sera par la suite également dénommé cercle ou droite.

I - Généralités

- I.1. Si M' = I(M), exprimer OM' en fonction de la longueur OM.
- I.2. Montrez que les points O, M, M' sont alors alignés, et que

$$\overrightarrow{OM}.\overrightarrow{OM'} = k.$$

- I.3. Déterminez, en fonction du réel k, la nature de l'ensemble des points M de P^* invariants par l'application I, c'est à dire tels que I(M) = M.
- I.4. Vérifiez que l'inversion I est une involution, c'est à dire que $I \circ I = Id_{P^*}$.
- I.5. Déterminez l'image par l'application I du cercle $\mathcal{C}(O,r)$ de centre O et de rayon r>0.

II - Image par l'inversion d'un cercle passant par le point O

Soit $\Omega \neq O$ un point d'affixe $\omega \neq 0$, et $\mathcal{C} = \mathcal{C}(\Omega, r)$ le cercle de centre Ω passant par le point O. On note H le point du cercle diamétralement opposé à l'origine O. On note H' l'image de H par l'inversion I, et on note \mathcal{D} la droite passant par le point H', orthogonale à la droite (OH). Soit M un point de $\mathcal{C}(\Omega, r)$ différent de O et de H. Soit N l'intersection de (OM) et de \mathcal{D} .

II.1. On suppose dans un premier temps que k < 0.

II.1.a. Faites une figure dans le cas particulier où $\omega = 1 + i$ et k = -4, et M librement choisi.

II.1.b. Retour au cas général k < 0. Démontrez que les triangles OMH et OH'N sont semblables.

II.1.c. En déduire que N est l'image de M par l'inversion I.

II.1.d. Décrire l'image du cercle \mathcal{C} par l'inversion I.

II.2. Si k > 0, quelle est l'image du cercle \mathcal{C} par l'inversion I?

III - Image par l'inversion d'un cercle ne passant par l'origine

On considère cette fois un cercle $\mathcal{C} = \mathcal{C}(\Omega, r)$ de centre $\Omega \neq O$, de rayon r > 0 arbitraire. On note encore ω l'affixe de Ω .

III.1. Posons $\lambda = r^2 - |\omega|^2$. Caractérisez géométriquement les cas où $\lambda = 0$.

III.2. Soit M un point de P^* d'affixe z. Démontrez que

$$M \in \mathcal{C} \Leftrightarrow z\bar{z} - \bar{\omega}z - \omega\bar{z} = \lambda.$$

III.3. On suppose dorénavant que \mathcal{C} ne passe pas par O. On notera z' l'affixe de M' = I(M). Déduire de III.2. que l'image du cercle \mathcal{C} par l'inversion I est un cercle \mathcal{C}' ne passant pas par O. (Indication: on pourra poser $\omega' = -k\omega/\lambda$ et $\lambda' = k^2/\lambda$).

III.4. Montrez que \mathcal{C}' est également l'image de \mathcal{C} par une homothétie dont on précisera le rapport en fonction de k et λ .