

Théorèmes limites

Préparation au Capes - Université Rennes 1

On considère des variables aléatoires X et $(X_n)_{n\geq 1}$. Le but de cette partie est de donner un sens à la convergence de la suite $(X_n)_{n\geq 1}$ vers la variable X.

Hélène Guérin, helene.guerin@univ-rennes1.fr

I - Rappels sur les variables gaussiennes Définition :

Une variable aléatoire X d'espérance m et de variance σ^2 suit la loi **gaussienne** (ou **normale**), $X \sim \mathcal{N}(m, \sigma^2)$, si elle a pour densité

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right)$$
 avec $x \in \mathbb{R}$.

Propriétés:

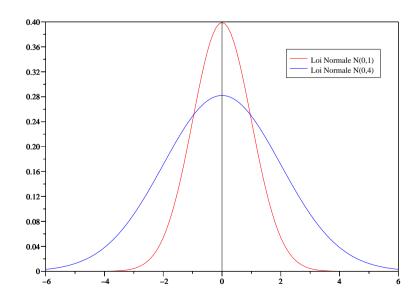
1. La transformée de Laplace de $X \sim \mathcal{N}(m, \sigma^2)$ est :

$$L_X(t) = E[e^{tX}] = e^{mt}e^{\frac{\sigma^2 t^2}{2}}$$
 pour $t \in \mathbb{R}$.

- 2. Si $a, b \in \mathbb{R}$, $X \sim \mathcal{N}(m, \sigma^2)$, alors $aX + b \sim \mathcal{N}(am + b, a^2\sigma^2)$.
- 3. Si X_1, \ldots, X_n gaussiennes indépendantes et $a_1, \ldots, a_n \in \mathbb{R}$, alors $Y = a_1 X_1 + \ldots + a_n X_n$ est une variable gaussienne.

Remarque

- 1. La loi gaussienne est bien connue. N'importe quel ordinateur donne les valeurs de la fonction de répartition.
- 2. Si $X \sim \mathcal{N}(0,1)$, alors les valeurs de X sont "concentrées" entre -4 et 4. En effet, $P(|X| > 4) = 5.10^{-5}$.
- 3. Du fait de la symétrie de la loi Normale $\mathcal{N}(0,1)$, on a $P(|X| \leq x) = 2P(X \leq x) 1$.



II - Inégalités importantes

L'inégalité de Markov

Soit X une variable positive et un réel a > 0, alors

$$P(X > a) \le \frac{E[X]}{a}.$$

L'inégalité de Bienaymé-Tchebichev

Soit X une variable dans L^2 et un réel a > 0, alors

$$P(|X - E[X]| > a) \le \frac{Var(X)}{a^2}.$$

III - Différentes notions de convergence

On considère des variables X et $(X_n)_{n>1}$.

• Convergence en probabilité

La suite $(X_n)_{n\geq 1}$ converge en probabilité vers X ssi

$$\forall \varepsilon > 0 \quad \lim_{n \to +\infty} P(|X_n - X| > \varepsilon) = 0.$$

On note alors $X_n \xrightarrow[n \to +\infty]{proba} X$.

Propriétés Soient $(X_n)_{n\geq 1}$ et $(Y_n)_{n\geq 1}$ deux suites de v.a. qui convergent respectivement vers X et Y en probabilité. Alors

- si f est continue sur \mathbb{R} alors $(f(X_n))_{n\geq 1}$ converge en probabilité vers f(X),
- $(X_nY_n)_{n\geq 1}$ converge en probabilité vers XY,
- si $(a_n)_{n\geq 1}$ est une suite de réels convergeant vers a, alors $(X_n + a_n Y_n)_{n>1}$ converge en probabilité vers X + aY.

• Convergence en loi

La suite $(X_n)_{n\geq 1}$ converge en loi vers X ssi

$$\forall I \text{ intervalle } P(X_n \in I) \xrightarrow[n \to +\infty]{} P(X \in I).$$

On note alors $X_n \xrightarrow[n \to +\infty]{loi} X$.

Propriétés Soit $(X_n)_{n\geq 1}$ une suite qui converge en loi vers X. Si f est continue sur \mathbb{R} alors $(f(X_n))_{n\geq 1}$ converge en loi vers f(X),

Attention! $(X_n)_{n\geq 1}$ et $(Y_n)_{n\geq 1}$ deux suites qui convergent respectivement vers X et Y en loi, on ne peut rien dire de la convergence de $(X_nY_n)_{n\geq 1}$ ou de $(X_n+Y_n)_{n\geq 1}$!

Proposition Soit f une fonction continue.

Si
$$(X_n, Y_n) \xrightarrow[n \to +\infty]{loi} (X, Y)$$
, alors $f(X_n, Y_n) \xrightarrow[n \to +\infty]{loi} f(X, Y)$.

Proposition Il y a équivalence entre les assertions suivantes :

- 1. $X_n \xrightarrow[n \to +\infty]{loi} X$
- 2. Convergence des fonctions de répartition : $F_{X_n}(x) \xrightarrow[n \to +\infty]{} F_X(x) \quad \forall x \text{ point de continuité de } F_X.$
- 3. Convergence des transformées de Laplace : $L_{X_n}(t) \xrightarrow[n \to +\infty]{} L_X(t)$.
- 4. Dans le cas discret $P(X_n = x) \rightarrow P(X = x)$ pour tout $x \in \mathbb{D}_X$.

Exemple

- 1. Si X_m suit une loi hypergéométrique $H(N_m, n, m)$ avec $p_m = \frac{m}{N_m} \xrightarrow[m \to +\infty]{} p \in]0, 1[$, alors la loi de X_m converge vers la loi Binomiale de paramètre (n, p).
- 2. Si X_n suit une loi Binomiale $\mathcal{B}(n, p_n)$ avec $np_n \xrightarrow[n \to +\infty]{} \lambda > 0$, alors la loi de X_n converge vers la loi de Poisson $\mathcal{P}(\lambda)$.

Lien entre les deux notions de convergence

"convergence en proba" \Rightarrow "convergence en loi"

Attention la réciproque est fausse! Cependant,

Si $X_n \xrightarrow[n \to +\infty]{loi} a$ et a est constante, alors $X_n \xrightarrow[n \to +\infty]{proba} a$.

Remarque si $(X_n)_{n\geq 1}$ converge en proba vers a réel et $(Y_n)_{n\geq 1}$ en loi vers Y, alors convergence (X_n, Y_n) converge en loi vers (a, Y).

IV - La loi faible des grands nombres

Théorème 1 Soit X une v.a. avec $E[|X|] < \infty$.

Soient $X_1, X_2, ..., X_n$ des variables indépendantes et de même loi que X. Alors

$$\frac{X_1 + X_2 + \dots + X_n}{n} \xrightarrow[n \to +\infty]{} E(X) \quad \text{en proba.}$$

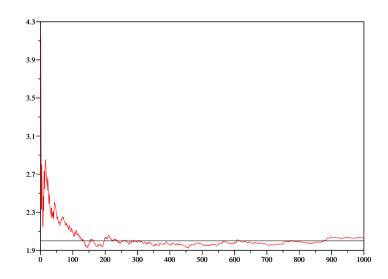


Illustration de la loi des grands nombres, avec $X_i \sim \mathcal{E}(1/2)$.

V - Le théorème limite centrale

Théorème 2 Soit X une v.a. avec $E[X^2] < \infty$. On pose m = E(X) et $\sigma^2 = Var(X)$.

Soient $X_1, X_2, ..., X_n$ des variables indépendantes et de même loi que X. Alors

$$\frac{\sqrt{n}}{\sigma} \left(\frac{X_1 + X_2 + \dots + X_n}{n} - m \right) \underset{n \to +\infty}{\longrightarrow} Z \text{ en loi, avec } \mathcal{L}(Z) = \mathcal{N}(0, 1).$$

i.e.
$$\forall a, b \in \overline{\mathbb{R}}, a \leq b,$$

$$P\left(\frac{\sqrt{n}}{\sigma} \left(\frac{X_1 + X_2 + \dots + X_n}{n} - m\right) \in [a, b]\right) \xrightarrow[n \to +\infty]{} \int_a^b e^{-\frac{x^2}{2}} \frac{dx}{\sqrt{2\pi}}$$

Exemples

1. Si X_i sont des v.a. indépendantes de loi $\mathcal{B}(p)$, alors $S_n = \sum_{i=1}^n X_i$ suit une loi $\mathcal{B}(n,p)$. Par conséquent, pour n grand on approche

$$\frac{S_n - np}{\sqrt{np(1-p)}} \sim \mathcal{N}(0,1)$$

2. Si X_i sont des v.a. indépendantes de loi $\mathcal{P}(\lambda)$, alors $S_n = \sum_{i=1}^n X_i$ suit une loi $\mathcal{P}(n\lambda)$. Par conséquent, pour n grand on approche

$$\frac{S_n - n\lambda}{\sqrt{n\lambda}} \sim \mathcal{N}(0, 1)$$

Règles d'usage

- 1. On approche la loi $\mathcal{P}(\lambda)$ par $\mathcal{N}(\lambda, \lambda)$ dès que $\lambda \geq 10$.
- 2. On approche la loi $\mathcal{B}(n,p)$ par $\mathcal{N}(np,np(1-p))$ dès que $np \geq 10$ et $n(1-p) \geq 10$.
- 3. Si np < 10 et $p \le 0.1$, on approche la loi $\mathcal{B}(n, p)$ par $\mathcal{P}(np)$.