Préparation au CAPES de Mathématiques

Corrigé rapide du problème de géométrie n°2

- a) On a $(r \circ \sigma_x \circ r^{-1})^2 = r \circ \sigma_x \circ r^{-1} \circ r \circ \sigma_x \circ r^{-1} = id$. L'isométrie $r \circ \sigma_x \circ r^{-1}$ est donc involutive (et distincte de l'identité). De plus, $r \circ \sigma_x \circ r^{-1}(r(x)) = r(x)$. Finalement, $r \circ \sigma_x \circ r^{-1}$ est la symétrie orthogonale par rapport à la droite engendrée par r(x): $r \circ \sigma_x \circ r^{-1} = \sigma_{r(x)}$.
 - b) On peut, sans restriction, supposer x et y de même norme (car, pour $\lambda \neq 0$ on a $\sigma_{\lambda y} = \sigma_y$). Soit alors \mathcal{P} un plan de E contenant x et y. Soit \tilde{r} l'unique rotation de \mathcal{P} envoyant x sur y. Si z est un vecteur non nul orthogonal à \mathcal{P} et si θ désigne l'angle de \tilde{r} (\mathcal{P} étant orienté par le choix de z), la rotation $r = r_{\mathbb{R}z,\theta}$ vérifie bien r(x) = y. Pour ce choix de r, on a $r \circ \sigma_x \circ r^{-1} = \sigma_y$.

 Autre méthode: Posons $m = \frac{x+y}{2}$. Comme $\langle \frac{x+y}{2}, \frac{x-y}{2} \rangle = \frac{1}{4}(\|x\|^2 \|y\|^2) = 0$ (cf ci-dessus), $\frac{x-y}{2} \in (\mathbb{R}m)^{\perp}$. Par suite, $\sigma_m(x) = \sigma_m\left(\frac{x+y}{2} + \frac{x-y}{2}\right) = \frac{x+y}{2} \frac{x-y}{2} = y$. On peut donc aussi choisir $r = \sigma_m$.
- a) On peut par hypothèse considérer un élément r = r_{D,θ} de G\{id_E}. Quitte à changer l'orientation de D, on peut supposer θ ∈]0, π].
 Si θ ∈ [π/2, π], il n'y a rien à faire puisque ∀u ∈ D[⊥], ⟨u, r(u)⟩ = ||u||² cos θ ≤ 0.
 Sinon, soit k le plus petit entier naturel tel que kθ ≥ π/2. Alors (k − 1)θ < π/2 donc kθ < π/2 + θ < π et finalement kθ ∈ [π/2, π[. Le résultat en découle puisque kθ est l'angle de la rotation r^k ∈ G\{id_E}.
 - b) Fixons nous un $u \in D^{\perp} \setminus \{0\}$ tel que $\langle u, r(u) \rangle \leq 0$ (c'est possible d'après la question précédente) et soit w un vecteur directeur de D. On cherche v sous la forme $v = \lambda u + \mu w$. On a alors $\langle v, r(v) \rangle = \langle \lambda u + \mu w, \lambda r(u) + \mu r(w) \rangle = \lambda^2 \langle u, r(u) \rangle + \lambda \mu (\langle w, r(u) \rangle + \langle u, w \rangle) + \mu^2 \langle w, w \rangle$ car r(w) = w. Or, $r(u) \in D^{\perp}$ donc $\langle v, r(v) \rangle = \lambda^2 \langle u, r(u) \rangle + \mu^2 \langle w, w \rangle$. Il suffit pour conclure de choisir par exemple $\lambda = 1$ et $\mu = \sqrt{\frac{-\langle u, r(u) \rangle}{\langle w, w \rangle}}$.
 - c) D'après 1)a), on a $\sigma_v \circ r \circ \sigma_v \circ r^{-1} = \sigma_v \circ \sigma_{r(v)}$ et par construction de $v, r(v) \perp v$. Si w désigne un vecteur non nul orthogonal à v et à r(v), alors $\sigma_v \circ \sigma_{r(v)}(w) = \sigma_v(-w) = w$. Finalement, $\sigma_v \circ r \circ \sigma_v \circ r^{-1}$ est le retournement d'axe $\mathbb{R}w$. Le lecteur, pour s'en convaincre, pourra par exemple écrire $E = \mathbb{R}w \stackrel{\perp}{\oplus} \operatorname{Vect}\{v, r(v)\}$.
- 3) Soit donc G un sous-groupe distingué de \mathcal{R} . Supposons $G \neq \{id_E\}$. D'après la question 2.c), il existe alors r dans G et un vecteur non nul v tel que $\sigma_v \circ r \circ \sigma_v \circ r^{-1}$ soit un retournement. Or, G étant distingué $\sigma_v \circ r \circ \sigma_v = \sigma_v \circ r \circ \sigma_v^{-1} \in G$ et donc $\sigma_v \circ r \circ \sigma_v \circ r^{-1} \in G$ (G est un groupe) : G contient un retournement σ_x . D'après 1.b), tout retournement σ_y peut s'écrire $\sigma_y = r \circ \sigma_x \circ r^{-1}$ pour un certain r de \mathcal{R} donc est aussi dans G (qui est distingué). Les retournements engendrant \mathcal{R} , on a finalement $G = \mathcal{R}$.