Master 1 MEEF 2024-2025

Analyse et Probabilités 1

Corrigé de l'exercice de probabilités à rendre pour le 18 octobre 2024

On suppose $n \ge 2$.

1) On numérote les k personnes et on attribue à chacune un entier de $[\![1,n]\!]$ correspondant à son jour anniversaire (les jours de l'année sont numérotés de 1 à n). On considère donc comme univers l'ensemble des k-listes de $[\![1,n]\!]$. Card $(\Omega)=n^k$.

Les naissances étant supposées parfaitement réparties, on munit Ω de la probabilité uniforme \mathbb{P} .

- 2) Soit A l'événement : « personne n'a le même jour anniversaire ». Choisir un élément de A c'est choisir une suite ordonnée de k dates anniversaires distinctes parmi n. A apparaît donc comme l'ensemble des k-arrangements de $[\![1,n]\!]$.
 - Il est clair que pour k > n, $A = \emptyset$ et $\mathbb{P}(A) = 0$.
 - Pour $k \leqslant n$, $\operatorname{Card}(A) = A_n^k$ et donc $\mathbb{P}(A) = \frac{A_n^k}{n^k} = \frac{n!}{(n-k)! \, n^k}$.

L'événement « Au moins deux personnes ont même jour anniversaire » n'est autre que \overline{A} et sa probabilité p(k) est donc $p(k) = \mathbb{P}(\overline{A}) = 1 - \frac{n!}{(n-k)! \, n^k}$ si $k \leq n$.

3) Pour n = 365 on obtient $p(23) \simeq 0,507, p(55) \simeq 0,986$ et $p(68) \simeq 0,999$.

On constate donc deux choses:

- Il suffit de 23 personnes pour avoir plus d'une chance sur deux qu'il y ait une coïncidence de dates d'anniversaires. Ce résultat incontestable n'est pourtant pas très intuitif...
- s'il faut au moins 366 personnes pour que l'événement soit sûr, il en suffit de beaucoup moins pour que l'événement soit très fortement probable.