Préparation au CAPES de Mathématiques

Problème d'algèbre n°1

A rendre pour le jeudi 8 novembre 2007

On se propose de déterminer les entiers naturels non nuls a, b et n tels qu'en base n on ait $\overline{aa}^2 = \overline{bbbb}$.

- 1) Vérifier qu'en base 7 on a $\overline{55}^2 = \overline{4444}$.
- 2) Soit (a, b, n) une solution.
 - a) Montrer que a < n, que b < n et que $a^2(1+n) = b(1+n^2)$.
 - b) Montrer que le pgcd de 1+n et $1+n^2$ est 1 ou 2. En déduire que $b=\frac{1+n}{2}$ et que

(E)
$$n^2 - 2a^2 = -1$$
 (équation de Pell-Fermat)

- c) Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto x^2 2a^2 + 1$. Vérifier que f est croissante sur $[0, +\infty[$ et en déduire que $\frac{4a}{3} < n < \frac{3a}{2}$.
- d) On pose $a'_1 = 3a 2n$ et $n'_1 = -4a + 3n$. Vérifier que $n'_1{}^2 2{a'_1}^2 = -1$, que $n'_1 < n$ et que n'_1 est un entier naturel impair.

On suppose $n'_1 \neq 1$. Montrer que $(a'_1, \frac{1+n'_1}{2}, n'_1)$ est une solution de (E).

- 3) On pose $a_0 = 1$, $n_0 = 1$ et, pour $k \in \mathbb{N}$, $a_{k+1} = 3a_k + 2n_k$ et $n_{k+1} = 4a_k + 3n_k$.
 - a) Vérifier que, pour tout k de \mathbb{N}^* , n_k est un entier naturel impair et que $(a_k, \frac{1+n_k}{2}, n_k)$ est une solution.
 - b) Soient $A = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$ et $k \in \mathbb{N}$. Calculer A^k .
- 4) Déterminer finalement toutes les solutions du problème initial.