

Algèbre et Géométrie 2

Feuille d'exercices d'algèbre n°1

Nombres complexes

Révisions

- Rappeler les propriétés du module et de l'argument d'un nombre complexe.
- En utilisant les nombres complexes, calculer $\cos(5\theta)$ et $\sin(5\theta)$ en fonction de $\cos\theta$ et $\sin\theta$.
- Soit $n \in \mathbb{N}^*$. Donner l'expression des racines n-ièmes de l'unité. Quelle est leur somme?
- Vérifier que $\{z \in \mathbb{C}, |z|=1\}$ et $\{z \in \mathbb{C}, z^n=1\}$ sont des groupes multiplicatifs.

Exercice n°1

Calculer le module et un argument de

- 1) $u = \frac{\sqrt{6} i\sqrt{2}}{2}$ et v = 1 i. En déduire le module et un argument de $w = \frac{u}{v}$.
- 2) $u = e^{i\theta} + e^{2i\theta}$ où $\theta \in \mathbb{R}$.

Exercice n°2 (CAPES - Première épreuve 2015)

On considère un entier naturel n non nul.

- 1) Justifier que, pour tout nombre complexe $z, Re(z) \leq |z|$ et étudier le cas d'égalité.
- 2) Démontrer que, pour tout couple (z_1, z_2) de nombres complexes, $|z_1 + z_2| \leq |z_1| + |z_2|$.
- 3) On suppose que z_1 et z_2 sont des nombres complexes non nuls. Montrer que l'inégalité précédente est une égalité si et seulement s'il existe un réel positif λ tel que $z_2 = \lambda z_1$. Interpréter ce résultat en termes d'argument.
- 4) Démontrer que, pour tout n-uplet (z_1, z_2, \dots, z_n) de nombres complexes, $\left| \sum_{k=1}^n z_k \right| \leqslant \sum_{k=1}^n |z_k|$.
- 5) Montrer que, si z_1, z_2, \dots, z_n sont des nombres complexes tous non nuls, l'inégalité précédente est une égalité si et seulement si : $\forall k \in [\![1,n]\!], \quad \exists \lambda_k \in \mathbb{R}_+, \quad z_k = \lambda_k z_1.$ Interpréter ce résultat en termes d'arguments.

Exercice n°3

Soit n un entier naturel non nul et a un nombre complexe.

On considère l'équation (E) d'inconnue complexe $z: \left(\frac{z-i}{z+i}\right)^n = a$

- a) Montrer que si (E) admet une solution réelle alors |a|=1.
- b) Démontrer que si (E) admet une solution réelle alors toutes ses solutions sont réelles.

Exercice n°4 (CAPESA - Première épreuve 2021)

Vrai ou Faux? Pour
$$z \in \mathbb{C}$$
, on a $\left| \frac{z+i}{z-i} \right| = 1$ si et seulement si z est réel.

Exercice n°5

Trouver l'ensemble des points M du plan dont l'affixe z est telle que le nombre $u = \left(\frac{z+1+i}{2z+1-i}\right)^2$ soit réel.

Exercice n°6

- 1) Soit z un nombre complexe non nul de module r et d'argument θ . Calculer |1+z| en fonction de r et de θ . En déduire $|1+z^2|$ en fonction de r et de θ .
- 2) Déterminer l'ensemble des points M du plan dont l'affixe z est telle que $|1+z^2|=|1+z|^2-2$.

Exercice n°7

Soit z un nombre complexe tel que $|z| \leq 2$. Quel est le maximum possible pour $|1+z+z^2+z^3|$? Pour quelles valeurs de z ce maximum possible est-il atteint?

Exercice n°8

Calculer les racines carrées de $\frac{1+i}{\sqrt{2}}$. En déduire les valeurs de $\cos\left(\frac{\pi}{8}\right)$ et $\sin\left(\frac{\pi}{8}\right)$.

Exercice n°9 (CAPES - Deuxième épreuve 2009)

On considère les nombres complexes $a_0 = 6 - 2i$, $a_1 = -3 - 5i$, $a_2 = -2 + 3i$, et on définit le polynôme $p(X) \in \mathbb{C}[X] \text{ par} : p(X) = X^3 + a_2X^2 + a_1X + a_0$

- 1) Montrer que p(X) possède une racine réelle.
- 2) Résoudre dans \mathbb{C} l'équation : $z^2 + 3iz 3 + i = 0$
- 3) Vérifier que les racines de p(X) appartiennent au disque fermé de centre O et de rayon R où l'on a $R = \max\{|a_0|, 1 + |a_1|, 1 + |a_2|\}.$

Exercice n°10

Résoudre dans \mathbb{C} les équations suivantes :

1)
$$z^2 - \sqrt{3}z - i = 0$$

2) $z^3 = \frac{1}{4}(-1+i)$. Montrer qu'une seule des solutions a une puissance quatrième réelle.

3)
$$z^4 + 2z^2 + 4 = 0$$
.

4)
$$z^6 + (7-i)z^3 - 8 - 8i = 0$$
.

Exercice n°11

Soit n un entier naturel.

- 1) Calculer, suivant les valeurs du réel x, les sommes : $\sum_{k=0}^{n} \cos(kx)$ et $\sum_{k=0}^{n} \sin(kx)$.
- 2) On suppose $n \ge 2$. Montrer que : $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right) = \frac{n}{2^{n-1}}$.

Exercice $n^{\circ}12$ (*)

Soit
$$\mathbb{Z}[i] = \{a + ib, (a, b) \in \mathbb{Z}^2\}.$$

- 1) Montrer que si α et β sont dans $\mathbb{Z}[i]$ alors $\alpha + \beta$ et $\alpha\beta$ le sont aussi.
- 2) Trouver les élements inversibles de $\mathbb{Z}[i]$, c'est-à-dire les éléments $\alpha \in \mathbb{Z}[i]$ pour lesquels il existe $\beta \in \mathbb{Z}[i]$ tel que $\alpha\beta = 1$.
- 3) Vérifier que quel que soit $\omega \in \mathbb{C}$ il existe $z \in \mathbb{Z}[i]$ tel que $|\omega z| < 1$.
- 4) Montrer qu'il existe sur $\mathbb{Z}[i]$ une division euclidienne, c'est-à-dire que, quels que soient α et β dans $\mathbb{Z}[i]$ il existe q et r dans $\mathbb{Z}[i]$ vérifiant :

$$\alpha = \beta q + r$$
 avec $|r| < |\beta|$.

2

(Indication : on pourra considérer le complexe $\frac{\alpha}{\beta}$.)