

Algèbre et Géométrie 1

Feuille d'exercices de géométrie n°1

Isométries du plan affine euclidien

Révisions n°1

- 1) Rappeler la définition d'un espace affine \mathscr{E} . Faire le lien avec l'enseignement des vecteurs dans le secondaire.
- 2) Comment définir une droite (affine) de \mathscr{E} ? Démontrer que par deux points distincts A et B de \mathscr{E} il passe une unique droite affine, notée (AB).
- 3) Donner la définition d'une translation du plan (affine). Quelles en sont les proriétés?
- 4) Quand un espace affine \mathscr{E} est-il dit euclidien?
- 5) Rappeler la définition d'une isométrie de \mathscr{E} . Donner des exemples simples.

Exercice n°1 (CAPES 2023 - Première composition)

On se place dans un plan vectoriel P muni d'un produit scalaire noté (.|.) et d'une norme associée notée ||.||. Soient x et y dans P tels que ||x|| = ||y||.

Montrer que les vecteurs x + y et x - y sont orthogonaux.

Exercice n°2 (Mayotte 2025 - Deuxième composition)

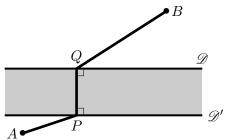
Soient \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs d'un espace vectoriel euclidien. Montrer que si $\overrightarrow{u} \perp (\overrightarrow{v} - \overrightarrow{w})$ et $\overrightarrow{v} \perp (\overrightarrow{u} - \overrightarrow{w})$ alors $\overrightarrow{w} \perp (\overrightarrow{u} - \overrightarrow{v})$.

Exercice n°3

1) Dans la configuration ci-contre, A et B sont deux points fixes et P et Q sont variables respectivement sur les droites \mathscr{D} et \mathscr{D}' ((PQ) restant orthogonale aux deux droites parallèles \mathscr{D} et \mathscr{D}').

Où placer le pont [PQ] pour que le trajet de A à B soit le plus court possible?

2) De même, dans la configuration ci-contre, où doiton construire les deux ponts (perpendiculairement aux berges de chaque rivière) pour relier les points A et Bpar le trajet de longueur minimale?



Exercice n°4 (Isométries du plan affine euclidien)

Soient \mathscr{P} un plan affine euclidien et f une isométrie de \mathscr{P} . On rappelle que, par définition, une rotation est une composée de deux réflexions dont les axes sont soit confondus, soit sécants en un point.

- 1) Montrer que s'il existe trois points A, B et C non alignés fixés par f (i.e f(A) = A, f(B) = B et f(C) = C), alors f est l'identité.
- 2) Montrer que si f fixe deux points distincts A et B alors f est soit l'identité soit la réflexion d'axe (AB).
- 3) Soit A un point de \mathscr{P} . Montrer que l'ensemble des isométries qui laissent A invariant est réunion de l'ensemble des réflexions dont l'axe passe par A et des rotations qui laissent A invariant.
- 4) Montrer que toute isométrie du plan est composée d'au plus trois réflexions.
- 5) Montrer que l'ensemble $Is(\mathscr{P})$ des isométries de \mathscr{P} est un groupe et que pour tout point O de \mathscr{P} , l'ensemble $Is_o(\mathscr{P})$ des isométries de \mathscr{P} fixant O est un sous-groupe de $Is(\mathscr{P})$.

Exercice n°5

- 1) Montrer que la composée de deux réflexions par rapport à des droites parallèles est une translation.
- 2) Montrer que toute translation $t_{\overrightarrow{u}}$ peut s'écrire comme composée $s_{\mathscr{D}_2} \circ s_{\mathscr{D}_1}$ de deux réflexions d'axes parallèles (\mathscr{D}_1 étant choisie arbitrairement mais orthogonale à \overrightarrow{u} et \mathscr{D}_2 étant alors $\mathscr{D}_2 = t_{\frac{1}{2}\overrightarrow{u}}(\mathscr{D}_1)$).

Exercice n°6

- 1) Montrer que toute rotation de centre A et d'angle θ peut se décomposer sous la forme $r_{A,\theta} = s_{\mathscr{D}_2} \circ s_{\mathscr{D}_1}$ où \mathscr{D}_1 et \mathscr{D}_2 sont deux droites sécantes en A, l'une d'entre-elles pouvant être choisie arbitrairement (passant par A).
- 2) (CAPES 2019 Première composition) Donner une construction à la règle et au compas du centre de la rotation $r_1 \circ r_2$ lorsque r_1 est la rotation de centre d'affixe i et d'angle $\frac{\pi}{2}$ et r_2 est la rotation de centre O et d'angle $\frac{\pi}{3}$.
- 3) Montrer que l'ensemble des rotations du plan fixant le point A est un groupe pour la composition.
- 4) Que peut-on dire de la composée de deux rotations du plan? Cette composée est-elle commutative?

Exercice n°7

Montrer que la composée d'une réflexion d'axe \mathscr{D} et d'une translation de vecteur \overrightarrow{u} est une réflexion d'axe parallèle à \mathscr{D} si $\overrightarrow{u} \perp \overrightarrow{\mathscr{D}}$ et une symétrie glissée sinon.

Exercice n°8

Donner le catalogue complet des différents types d'isométries du plan affine euclidien (justifier).

Exercice n°9 (CAPES 2024 - Première composition)

Dans un plan affine euclidien, on considère un triangle ABC sur lequel sont construits extérieurement les triangles équilatéraux ABD et ACE.

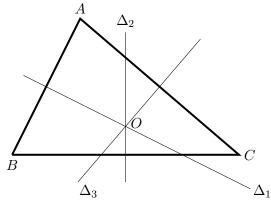
Vrai ou Faux : on a BE = DC.

Exercice n°10

1) Sur la figure ci-contre, ABC est un triangle quelconque du plan et O est le centre du cercle circonscrit à ABC. Δ_1 , Δ_2 , Δ_3 sont les médiatrices respectives des segments [AB], [BC] et [CA]. Pour $i \in \{1, 2, 3\}$, on note s_i la réflexion d'axe Δ_i .

Déterminer la nature exacte de la transformation $s_3 \circ s_2 \circ s_1$.

2) Trois droites concourantes Δ_1 , Δ_2 , Δ_3 étant données, expliquer comment construire un triangle ABC dont Δ_1 , Δ_2 , Δ_3 sont les médiatrices.

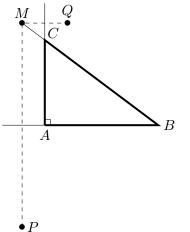


Exercice n°11

Sur la figure ci-contre, ABC est un triangle rectangle en A du plan affine euclidien orienté. M est un point de (BC) et P et Q sont les symétriques respectifs de M par rapport aux droites (AB) et (AC).

On note s_1 la réflexion d'axe (AB) et s_2 la réflexion d'axe (AC).

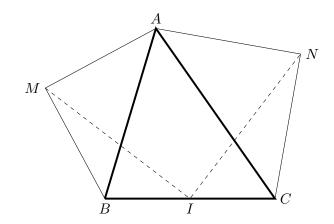
- 1) Rappeler les différents types d'isométries du plan.
- 2) Quelle est la nature de l'application $f = s_2 \circ s_1$?
- 3) En déduire que A est le milieu de [PQ].
- 4) Montrer que (BP)//(CQ).



Exercice n°12

Sur la figure ci-contre, ABC est un triangle quelconque du plan orienté. On a construit les triangles directs AMB et NAC rectangles isocèles. On note I le milieu de [BC]. Soit $f=r_{N,\frac{\pi}{2}}\circ r_{M,\frac{\pi}{2}}$ où $r_{\Omega,\alpha}$ désigne la rotation de centre Ω et d'angle de mesure α .

- a) Déterminer f(B). Préciser alors la nature exacte de la transformation f.
- **b)** Rappeler pourquoi on peut trouver deux droites \mathscr{D} et \mathscr{D}' telles que $r_{N,\frac{\pi}{2}} = s_{\mathscr{D}} \circ s_{(MN)}$ et $r_{M,\frac{\pi}{2}} = s_{(MN)} \circ s_{\mathscr{D}'}$. Par quel(s) point(s) passe(nt) nécessairement \mathscr{D} ? \mathscr{D}' ?
- c) Montrer que le triangle MIN est rectangle en I et isocèle.



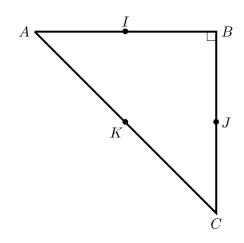
Exercice n°13

- 1) Rappeler les différents types d'isométries du plan.
- 2) Sur la figure ci-contre, ABC est un triangle rectangle isocèle en B du plan affine euclidien orienté.
- $I, J \text{ et } K \text{ désignent les milieux respectifs de } [AB], [BC] \text{ et } [AC] \text{ et on a } (\overrightarrow{BA}, \overrightarrow{BC}) \equiv \frac{\pi}{2} [2\pi].$

On note s la réflexion d'axe (IK) et r la rotation de centre A et d'angle de mesure $-\frac{\pi}{2}$.

On pose enfin $f = s \circ r$.

- a) Déterminer $f \circ f(A)$.
- b) En déduire la nature et les éléments caractéristiques de l'isométrie f.



Révisions n°2

- 1) Donner la définition et les principales propriétés d'une homothétie. Montrer qu'une homothétie est une application affine.
- 2) Qu'obtient-on en composant deux homothéties?

Exercice n°14

Montrer que l'ensemble des homothéties-translations planes (on parle aussi de *dilatations*) est l'ensemble des bijections du plan transformant une droite en une droite parallèle.

Exercice n°15

Montrer qu'une application f du plan \mathscr{P} dans lui même est une dilatation si et seulement si

$$\exists k \in \mathbb{R}^* \quad \forall (M, N) \in \mathscr{P}^2 \quad \overrightarrow{f(M)f(N)} = k\overrightarrow{MN}$$

En déduire que l'ensemble des dilatations est un groupe pour la composition des applications.

Exercice n°16

Soit ABC un triangle. Construire, si possible, un carré inscrit dans ce triangle.

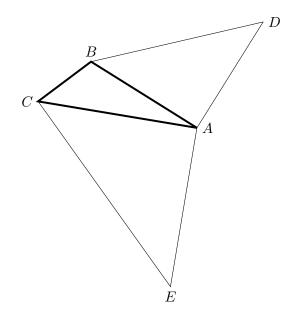
Exercice n°17

Dans le plan, étant donnés deux droites \mathscr{D} et \mathscr{D}' sécantes en A et un point I n'appartenant ni à \mathscr{D} ni à \mathscr{D}' , construire, si possible, un cercle passant par I et tangent à \mathscr{D} et \mathscr{D}' .

Exercice n°18

Le plan est orienté. Soient A, B et C trois points non alignés tels que ABC est un triangle direct. On désigne respectivement par D et E les points tels que les triangles ACE et ADB sont directs, rectangles et isocèles en A. Le point O est le milieu de [BC].

- 1) Construire le point F, symétrique du point C par rapport à A.
- 2) En utilisant une rotation de centre A et une homothétie de centre C, montrer que les droites (AO) et (DE) sont perpendiculaires et que DE = 2AO.



Exercice n°19

On considère dans le plan trois droites parallèles et distinctes (D_1) , (D_2) et (D_3) . Une droite (Δ) coupe (D_1) , (D_2) et (D_3) respectivement en A, B et C. Soit N un point de (D_2) distinct de B. La parallèle à (NC) passant par B coupe (D_1) en M. La parallèle à (NA) passant par B coupe (D_3) en P.

- 1) Soit h l'homothétie de centre A qui transforme B en C. Construire les points M' et N' images respectives de M et N par l'homothétie h.
- 2) En déduire les images de M et N par la transformation $f=t_{\overrightarrow{NB}}\circ h$
- 3) Montrer que les points M, N et P sont alignés.