

Algèbre et Géométrie 1

Feuille d'exercices de géométrie n°1

Isométries du plan affine euclidien

Révisions

- 1) Rappeler la définition d'un espace affine \mathscr{E} .
- 2) Comment définir une droite (affine) de \mathscr{E} ? Démontrer que par deux points distincts A et B de \mathscr{E} il passe une unique droite affine, notée (AB).
- 3) Quand un espace affine \mathscr{E} est-il dit euclidien?
- 4) Rappeler la définition d'une isométrie de \mathscr{E} . Donner des exemples simples.

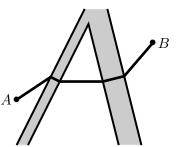
Exercice n°1

1) Dans la configuration ci-contre, A et B sont deux points fixes et P et Q sont variables respectivement sur les droites \mathscr{D} et \mathscr{D}' ((PQ) restant orthogonale aux deux droites parallèles \mathscr{D} et \mathscr{D}).

Où placer le pont [PQ] pour que le trajet de A à B soit le plus court possible?

Q \mathcal{D} A P

2) De même, dans la configuration ci-contre, où doiton construire les deux ponts (perpendiculairement aux berges de chaque rivière) pour relier les points A et Bpar le trajet de longueur minimale?



Exercice n°2 (Isométries du plan affine euclidien)

Soient \mathscr{P} un plan affine euclidien et f une isométrie de \mathscr{P} . On rappelle que, par définition, une rotation est une composée de deux réflexions dont les axes sont soit confondus, soit sécants en un point.

- 1) Montrer que s'il existe trois points A, B et C non alignés fixés par f (i.e f(A) = A, f(B) = B et f(C) = C), alors f est l'identité.
- 2) Montrer que si f fixe deux points distincts A et B alors f est soit l'identité soit la réflexion d'axe (AB).
- 3) Soit A un point de \mathscr{P} . Montrer que l'ensemble des isométries qui laissent A invariant est réunion de l'ensemble des réflexions dont l'axe passe par A et des rotations qui laissent A invariant.
- 4) Montrer que toute isométrie du plan est composée d'au plus trois réflexions.
- 5) Montrer que l'ensemble $Is(\mathscr{P})$ des isométries de \mathscr{P} est un groupe et que pour tout point O de \mathscr{P} , l'ensemble $Is_o(\mathscr{P})$ des isométries de \mathscr{P} fixant O est un sous-groupe de $Is(\mathscr{P})$.

Exercice n°3

- 1) Montrer que la composée de deux réflexions par rapport à des droites parallèles est une translation.
- 2) Montrer que toute translation $t_{\overrightarrow{u}}$ peut s'écrire comme composée $s_{\mathscr{D}_2} \circ s_{\mathscr{D}_1}$ de deux réflexions d'axes parallèles (\mathscr{D}_1 étant choisie arbitrairement mais orthogonale à \overrightarrow{u} et \mathscr{D}_2 étant alors $\mathscr{D}_2 = t_{\frac{1}{n}\overrightarrow{u}}(\mathscr{D}_1)$).

Exercice n°4

- 1) Montrer que toute rotation de centre A et d'angle θ peut se décomposer sous la forme $r_{A,\theta} = s_{\mathscr{D}_2} \circ s_{\mathscr{D}_1}$ où \mathscr{D}_1 et \mathscr{D}_2 sont deux droites sécantes en A, l'une d'entre-elles pouvant être choisie arbitrairement (passant par A).
- 2) (CAPES 2019 Première composition) Donner une construction à la règle et au compas du centre de la rotation $r_1 \circ r_2$ lorsque r_1 est la rotation de centre d'affixe i et d'angle π et r_2 est la rotation de centre O et d'angle $\frac{\pi}{3}$.
- 3) Montrer que l'ensemble des rotations du plan fixant le point A est un groupe pour la composition.
- 4) Que peut-on dire de la composée de deux rotations du plan? Cette composée est-elle commutative?

Exercice n°5

Montrer que la composée d'une réflexion d'axe \mathscr{D} et d'une translation de vecteur \overrightarrow{u} est une réflexion d'axe parallèle à \mathscr{D} si $\overrightarrow{u} \perp \overrightarrow{\mathscr{D}}$ et une symétrie glissée sinon.

Exercice n°6

Donner le catalogue complet des différents types d'isométries du plan affine euclidien (justifier).

Exercice n°7

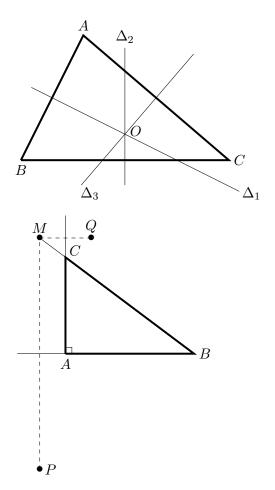
- 1) Sur la figure ci-contre, ABC est un triangle quelconque du plan et O est le centre du cercle circonscrit à ABC. Δ_1 , Δ_2 , Δ_3 sont les médiatrices respectives des segments [AB], [BC] et [CA]. Pour $i \in \{1,2,3\}$, on note s_i la réflexion d'axe Δ_i . Déterminer la nature exacte de la transformation $s_3 \circ s_2 \circ s_1$.
- 2) Trois droites concourantes Δ_1 , Δ_2 , Δ_3 étant données, expliquer comment construire un triangle ABC dont Δ_1 , Δ_2 , Δ_3 sont les médiatrices.

Exercice n°8

Sur la figure ci-contre, ABC est un triangle rectangle en A du plan affine euclidien orienté. M est un point de (BC) et P et Q sont les symétriques respectifs de M par rapport aux droites (AB) et (AC).

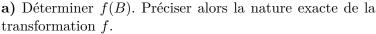
On note s_1 la réflexion d'axe (AB) et s_2 la réflexion d'axe (AC).

- 1) Rappeler les différents types d'isométries du plan.
- **2)** Quelle est la nature de l'application $f = s_2 \circ s_1$?
- 3) En déduire que A est le milieu de [PQ].
- 4) Montrer que (BP)//(CQ).



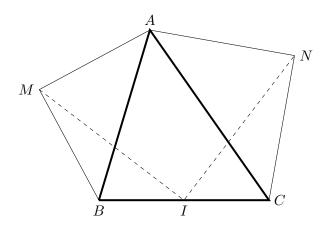
Exercice n°9

Sur la figure ci-contre, ABC est un triangle quelconque du plan orienté. On a construit les triangles directs AMB et NAC rectangles isocèles. On note I le milieu de [BC]. Soit $f = r_{N,\frac{\pi}{2}} \circ r_{M,\frac{\pi}{2}}$ où $r_{\Omega,\alpha}$ désigne la rotation de centre Ω et d'angle de mesure α .



b) Rappeler pourquoi on peut trouver deux droites \mathscr{D} et \mathscr{D}' telles que $r_{N,\frac{\pi}{2}} = s_{\mathscr{D}} \circ s_{(MN)}$ et $r_{M,\frac{\pi}{2}} = s_{(MN)} \circ s_{\mathscr{D}'}$. Par quel(s) point(s) passe(nt) nécessairement \mathscr{D} ? \mathscr{D}' ?

c) Montrer que le triangle MIN est rectangle en I et isocèle.



Exercice n°10

1) Rappeler les différents types d'isométries du plan.

2) Sur la figure ci-contre, ABC est un triangle rectangle isocèle en B du plan affine euclidien orienté.

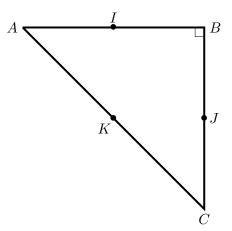
 $I, J \text{ et } K \text{ désignent les milieux respectifs de } [AB], [BC] \text{ et } [AC] \text{ et on a } (\overrightarrow{BA}, \overrightarrow{BC}) \equiv \frac{\pi}{2} [2\pi].$

On note s la réflexion d'axe (IK) et r la rotation de centre A et d'angle de mesure $-\frac{\pi}{2}$.

On pose enfin $f = s \circ r$.

a) Déterminer $f \circ f(A)$.

b) En déduire la nature et les éléments caractéristiques de l'isométrie f.



Exercice n°11 (CAPES 2020 - Première composition)

On note Q l'ensemble $\{A,B,C,D\}$ où A,B,C,D sont les sommets d'un carré du plan.

On se propose de déterminer l'ensemble I(Q) des isométries du plan \mathscr{P} qui conservent globalement l'ensemble Q. Parmi elles, $I^+(Q)$ désigne l'ensemble de celles qui sont directes et $I^-(Q)$ l'ensemble de celles qui sont indirectes. La médiatrice du segment [BC] est notée Δ et s_{Δ} désigne la réflexion d'axe Δ .

1) Montrer que I(Q) et $I^+(Q)$ munis de la composition des applications sont des groupes. En est-il de même pour $I^-(Q)$?

2) Montrer que l'application

$$F: \left\{ \begin{array}{cc} I^+(Q) & \longrightarrow I^-(Q) \\ f & \longmapsto s_{\Delta} \circ f \end{array} \right.$$

est bijective.

3) Démontrer que $I^+(Q)$ contient exactement quatre éléments. Donner la liste de ces éléments et la table du groupe $I^+(Q)$.

3

4) Préciser les caractéristiques géométriques de chacune des isométries de I(Q).