Feuille d'exercices d'algèbre (suite)

Exercice n°46

On donne trois nombres complexes a, b, c et les deux matrices suivantes :

$$J = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \quad \text{et} \quad M = \begin{pmatrix} a & b & c & b & c \\ c & a & b & c & b \\ b & c & a & b & c \\ c & b & c & a & b \\ b & c & b & c & a \end{pmatrix}$$

- 1) Calculer J^2, J^3, J^4, J^5 ; puis trouver un polynôme P de degré inférieur ou égal à 4 tel que M = P(J).
- 2) Déterminer les vecteurs propres et les valeurs propres de J. J est-elle diagonalisable?
- 3) Déduire des questions 1. et 2. que M est diagonalisable. Préciser ses valeurs propres et ses vecteurs propres.
- 4) On suppose à présent que b=c. Déduire de 3. le polynôme minimal et le polynôme caractéristique de M.
- 5) On suppose toujours b = c, non nuls cette fois. Déterminer deux suites de complexes (α_n) et (β_n) telles que $M^n = \alpha_n M + \beta_n I_5$.

Exercice n°47

- 1) Donner une décomposition de Dunford de la matrice $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.
- 2) Soit A = D + N la décomposition de Dunford de $A \in M_n(\mathbb{C})$. Quelle est celle de $A^k, k \in \mathbb{N}^*$? Si on suppose en outre A inversible, quelle est celle de A^{-1} ?

Formes quadratiques - Espaces euclidiens

Exercice n°48 VRAI ou FAUX

Soient $K = \mathbb{R}$ ou \mathbb{C} , E un K-e.v. de dimension n et q, q' deux formes quadratiques sur E. Pour chacune des propriétés suivantes, la démontrer ou expliciter un contre-exemple :

- 1) Si q et q' sont non dégénérées, il en est même de q + q'.
- 2) $K = \mathbb{R}$, si q et q' sont définies positives, il en est même de q + q'.
- 3) $K = \mathbb{R}$, si q est positive et q' est définie positive, alors q + q' est non dégénérée.
- 4) Si x est isotrope, $x \in N(q)$.
- 5) $K = \mathbb{R}$, si $I(q) = \{0\}$ alors ou bien q est positive, ou bien q est négative.

Exercice n°49

Soit $q: \mathbb{R}^3 \longrightarrow \mathbb{R}$ définie dans la base canonique par $q(x) = x_1^2 - x_3^2 + 2x_1x_2 + 2x_2x_3$. Soit F le sous-espace vectoriel de \mathbb{R}^3 engendré par v = (1, 1, 1).

- 1) Déterminer rang $(q),\ N(q),\ I(q),\ F^{\perp}$ et $F^{\perp\perp}.$
- 2) Vérifier que $N(q) \subseteq F^{\perp}$ et que $F^{\perp \perp} = F + N$.

Exercice n°50

Montrer qu'une forme quadratique q sur un espace vectoriel réel est positive ou négative si et seulement si son noyau est égal à son cône isotrope.

Exercice n°51

On considère les formes quadratiques sur \mathbb{R}^3 ou \mathbb{R}^4 définies par :

1)
$$q(x) = x_1^2 + 4x_2^2 + 9x_3^2 + 2x_1x_2 + 6x_2x_3$$

2)
$$q(x) = x_1^2 + 3x_2^2 + 8x_3^2 - 4x_1x_2 + 6x_1x_3 - 10x_2x_3$$

3)
$$q(x) = 5x_1x_2 + 6x_1x_3 + 2x_2x_3$$

4)
$$q(x) = x_1^2 + x_2^2 + x_3^2 - 2x_4^2 - 2x_1x_2 - 2x_1x_3 - 2x_1x_4 + 2x_2x_3 - 4x_2x_4$$

Déterminer une base orthogonale (orthonormale lorsque cela est possible) pour q. Préciser la matrice de q dans cette base et la signature de q.

Exercice n°52 (CAPES 2000)

La forme quadratique q_0 définie par $q_0(\beta, \gamma, \delta) = 3(\beta^2 + \gamma^2 + \delta^2) - 2(\gamma\delta + \delta\beta + \beta\gamma)$ est-elle définie positive?

Exercice n°53

Pour quelles valeurs $\lambda \in \mathbb{R}$ les formes bilinéaires sur \mathbb{R}^3 ci-dessous définissent-elles un produit scalaire ?

1)
$$a(x,y) = x_1y_1 + 6x_2y_2 + 3x_3y_3 + 2x_1y_2 + 2x_2y_1 + 3\lambda x_1y_3 + 3\lambda x_3y_1$$

2)
$$b(x,y) = x_1y_1 + 10x_2y_2 + \lambda x_3y_3 + 6x_1y_2 - x_2y_3 - x_3y_2$$

3)
$$c(x,y) = 2x_1y_1 + 7x_1y_2 + 7x_2y_1 + 8x_2y_2 - 3x_3y_3 + \lambda x_2y_3 + \lambda x_3y_2$$
.

Exercice n°54

Déterminer, par le procédé de Schmidt, une base orthonormale de \mathbb{R}^4 contenant une base du sous-espace engendré par les vecteurs $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, $\overrightarrow{v_3}$ où $\overrightarrow{v_1} = (1, 1, 0, 0)$, $\overrightarrow{v_2} = (0, 1, 1, 0)$, $\overrightarrow{v_3} = (0, 0, 1, 1)$.

Exercice n°55

Soient E un espace euclidien et $p \in L(E, E)$ tel que p o p = p. Montrer que p est un projecteur orthogonal si et seulement si p est symétrique.

Exercice n°56

On munit \mathbb{R}^3 du produit scalaire standard.

1) Caractériser géométriquement les endomorphismes de matrices :

$$A = \frac{1}{6} \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \end{pmatrix} \quad B = \frac{1}{9} \begin{pmatrix} 8 & -1 & -4 \\ -1 & 8 & -4 \\ -4 & -4 & -7 \end{pmatrix} \quad C = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$$

On pourra d'abord calculer A^2, B^2, C^2 .

- 2) Trouver les matrices, dans la base canonique, de :
 - la projection orthogonale sur le plan d'équation x 3y + z = 0.
 - la symétrie orthogonale par rapport au plan d'équation 2x + 2y z = 0.

Exercice n°57

Soient E un espace euclidien de dimension n sur \mathbb{R} , F un s.e.v. de dimension p et $x \in E$. Montrer l'existence et l'unicité de $y \in F$ tel que $\parallel x - y \parallel$ soit minimum. Dans une base convenablement choisie, exprimer y en fonction de x. Traduire le résultat en termes de distance. Applications :

8

- 1) Trouver a et b tel que $\int_0^1 (x^2 ax b)^2 dx$ soit minimum. Calculer ce minimum.
- 2) Trouver a et b tel que $\int_0^1 (\ln x ax b)^2 dx$ soit minimum. Calculer ce minimum.

Exercice n°58 Méthodes des moindres carrés.

Deux valeurs physiques sont liées par une relation y = ax + b. On veut trouver a et b. On fait n expériences de résultats $(x_i, y_i)_{1 \le i \le n}$. Montrer qu'on peut trouver a, b tels que $\sum_{i=1}^{n} (y_i - ax_i - b)^2$ soit minimum. Déterminer a et b.

Exercice n°59 (CAPES 2001)
Soit
$$M$$
 la matrice réelle d'ordre quatre $M = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$.

- 1) Calculer M^2 et M^3 , et vérifier que M^3 est combinaison linéaire de M et de M^2 .
- 2) Montrer que pour tout entier n supérieur ou égal à 1 la matrice M^n peut s'écrire sous la forme :

$$M^n = a_n M + b_n M^2$$

et calculer a_{n+1} et b_{n+1} en fonction de a_n et b_n .

3) Généralisation : soit P une matrice symétrique réelle de rang 2. Prouver que P annule un polynôme de degré au plus trois, sans terme constant.

Exercice n°60

Soit f un endomorphisme orthogonal d'un espace euclidien.

- 1) Montrer que $Ker(f-Id) = Im(f-Id)^{\perp}$
- 2) En déduire que si $(f Id)^2 = 0$, alors f = Id.

Exercice n°61 Réduction simultanée de deux formes quadratiques.

- 1) Soient $V = (x, y) \in \mathbb{R}^2$ et deux formes quadratiques : $q_1(V) = x^2 + 2xy + 2y^2$ et $q_2(V) = x^2$.
 - a) Pour chacune des formes quadratiques, trouver une base où elle soit réduite.
 - b) Trouver une base de \mathbb{R}^2 , qui soit orthonormale pour l'une des deux formes quadratiques et orthogonale pour l'autre.
- 2) Sur l'espace euclidien \mathbb{R}^3 on considère $q_2(x) = x_1x_2 + x_1x_3$. trouver une base orthonormale dans laquelle la matrice de q_2 soit diagonale.

Exercice n°62

E est un \mathbb{R} -espace vectoriel, de dimension 3, rapporté à une base B dans laquelle on donne les deux formes quadratiques q et q':

$$\begin{array}{ll} q(x) & = 2x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3 + 2x_3x_1 \\ q'(x) & = 2x_1^2 + 2x_3^2 + 2x_1x_2 + 2x_2x_3 + 6x_3x_1 \end{array}$$

Montrer qu'il existe une base de E à la fois orthogonale pour q et pour q'. Déterminer une telle base.

Exercice n°63

Dans un \mathbb{R} espace vectoriel E de dimension finie, on donne deux formes quadratiques q et r vérifiant : $\forall x \in E \setminus \{0\}, q(x) + r(x) > 0$. Prouver qu'il existe une base de E orthogonale à la fois pour q et r.

Exercice n°64

Montrer qu'il n'existe pas de base simultanément orthogonale pour les deux formes quadratiques définies sur \mathbb{R}^2 (muni de la base canonique) par $q(x,y)=x^2-y^2$ et q'(x,y)=2xy.

9

Exercice $\mathbf{n}^{\circ}\mathbf{65}$ Etude des quadriques $\{M \in \mathbb{R}^n \text{ tel que } q(\overrightarrow{OM}) = b\}$ où $b \in \mathbb{R}$.

Pour les équations suivantes, donner la nature et les caractéristiques des courbes ou surfaces considérées.

1)
$$2x^2 + 3xy - 2y^2 = 10$$

2)
$$13x^2 + 10y^2 + 5z^2 - 12yz - 6xz - 4xy = 14$$

3)
$$4x^2 + 6xy + 4y^2 + \sqrt{2}(x+y) = 0$$

Exercice n°66 (d'après CAPES 1995)

Si A est une matrice symétrique réelle d'ordre 2, on note

$$\Sigma_A = \{ x \in \mathbb{R}^2, \ Q_A(x) = {}^t X A X = 1 \}$$

Soient
$$A = \begin{pmatrix} 2 & \sqrt{3} \\ \sqrt{3} & 4 \end{pmatrix}$$
 et $B = \begin{pmatrix} 2 & 2\sqrt{2} \\ 2\sqrt{2} & 4 \end{pmatrix}$.

- 1) Déterminer les valeurs propres et les sous-espaces propres de A ainsi qu'une matrice orthogonale P telle que ${}^t\!PAP$ soit diagonale. Quelle est la nature de la conique Σ_A ?
- 2) Vérifier que la forme quadratique Q_B est positive. Quelle est la nature de la conique Σ_B ?

Exercice n°67 (Représentation canonique des transformations orthogonales.) Soient f un endomorphisme orthogonal d'un espace euclidien E et $g = f + f^*$.

- 1) Montrer que g est auto-adjoint. On note $\lambda_1, \ldots, \lambda_m$ ses valeurs propres distinctes et V_{λ_i} les sous-espaces propres associés.
- 2) Montrer que les V_{λ_i} sont stables par f. On notera dorénavant f_{λ_i} la restriction de f à V_{λ_i} .
- 3) Montrer que le polynôme $Q(X) = X^2 \lambda_i X + 1$ est annulateur de f_{λ_i} .
- 4) On suppose $V_2 \neq \{0\}$. Montrer que $f_2 = Id$.
- 5) On suppose $V_{-2} \neq \{0\}$. Montrer que $f_{-2} = -Id$.
- 6) Soit $\lambda_i \neq \pm 2$ tel que $V_{\lambda_i} \neq \{0\}$. Montrer que si $v \in V_{\lambda_i} \setminus \{0\}$, alors v n'est pas vecteur propre de f. En déduire que W= s.e.v. engendré par $\{v, f(v)\}$ est de dimension 2.
- 7) Montrer que W et W^{\perp} sont stables par f et que la restriction $\tilde{f} = f_{|W}$ de f à W est une rotation.
- 8) En déduire qu'il existe une base orthonormée de E, dans laquelle la matrice de f est :

Exercice n°68

Donner une décomposition de M sous la forme M = QR avec Q orthogonale et R triangulaire supérieure lorsque

$$M = \left(\begin{array}{rrrr} -2 & 2 & 0 & 2\\ 2 & -1 & 1 & -1\\ 1 & 0 & 2 & 0 \end{array}\right)$$

(On pourra utiliser l'algorithme de Householder)

Exercice n°69

- 1) Montrer qu'une matrice de Householder est symétrique et orthogonale.
- 2) Montrer qu'un endomorphisme admettant pour matrice une matrice de Householder H, est une symétrie orthogonale par rapport à un hyperplan P de \mathbb{R}^m . En déduire la valeur du déterminant d'une matrice de Householder.
- 3) Démontrer que toute matrice orthogonale $n \times n$ est le produit d'au plus n matrices de Householder. En déduire une interprétation géométrique des matrices orthogonales.
- 4) Appliquer les résultats ci-dessus à la matrice $Q = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$.