

PRA2: Probabilités - Analyse

Contrôle continu du jeudi 31 mars 2016 Durée : 2h

Les cinq exercices sont indépendants - Le barème est donné à titre indicatif

La qualité de la rédaction interviendra pour une large part dans l'appréciation de la copie

Exercice n°1 (4 points)

Étudier la convergence simple et la convergence absolue de la série numérique dont le terme général est :

1)
$$u_n = \frac{(-1)^n}{n\sqrt{n} + \cos(n^2)}$$
 2) $v_n = e^{\frac{(-1)^n}{2\sqrt{n}}} - 1$

Exercice n°2 (4 points)

Étudier la convergence simple de chacune des intégrales suivantes :

1)
$$\int_0^{+\infty} \frac{\sqrt{t} \sin t}{1 + t^2} dt$$
 2)
$$\int_0^{+\infty} \frac{\sin x}{\sqrt{x}} dx$$

Exercice n°3 (3 points)

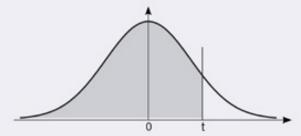
Pour tout entier naturel n, soit f_n la fonction définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$ $f_n(x) = (nx^2 + 1) e^{-nx^2}$

- 1) Donner le domaine de convergence simple de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$.
- 2) Soit a > 0. Montrer que la convergence de cette suite est uniforme sur l'intervalle $[a, +\infty[$.
- 3) La convergence est-elle uniforme sur \mathbb{R} ?

Exercice n°4 (5 points)

Une urne contient dix boules indiscernables au toucher : trois rouges et sept vertes. On tire au hasard une de ces boules et on observe sa couleur.

- 1) Modéliser l'expérience. Quelle est la probabilité d'obtenir une boule rouge?
- 2) Combien de fois faut-il répéter cette expérience (en remettant à chaque fois la boule tirée) pour que la proportion de boules rouges obtenues soit comprise entre 0,29 et 0,31 avec une probabilité supérieure à 0.98?


On donnera une estimation en utilisant l'approximation fournie par le théorème de De Moivre - Laplace.

Exercice n°5 (5 points)

Soient X et Y deux variables aléatoires indépendantes suivant toutes deux la loi uniforme sur [0,1] (c'est à dire de densité $f = \mathbb{1}_{[0,1]}$). On pose Z = Min(X,Y).

- a) Déterminer la fonction de répartition de la variable aléatoire Z.
- b) En déduire que Z admet une densité et donner une densité de Z.
- c) Montrer que Z a une espérance et calculer cette espérance.

Table donnant P(Z<t) pour une variable aléatoire suivant N(0,1)

								1		
	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
			Т.	able nour	les aran	des valeu	re			

Table pour les grandes valeurs

t	3	3,1	3,2	3,3	3,4	3,5	3,6	3,8	4	4,5
φ(t)	0,9987	0,9990	0,9993	0,9995	0,9997	0,9998	0,9998	0,999928	0,999968	0,999997