Problème n° 1

Notations.

On désigne par $\mathbb N$ l'ensemble des entiers naturels, par $\mathbb R$ l'ensemble des nombres réels et par $\mathbb C$ l'ensemble des nombres complexes.

Pour $z \in \mathbb{C}$, on note le conjugué de z par \overline{z} .

Pour n un entier naturel non nul, $\mathcal{M}_n(\mathbb{C})$ désigne l'ensemble des matrices à n lignes et n colonnes, à coefficients complexes. L'ensemble des matrices inversibles pour la multiplication matricielle de $\mathcal{M}_n(\mathbb{C})$ est noté $GL_n(\mathbb{C})$.

Partie A: rotations et translations du plan

On se place dans un plan euclidien orienté \mathcal{P} , muni d'un repère orthonormé direct.

Notations.

Soit θ un nombre réel non congru à 0 modulo 2π et Ω un point de \mathcal{P} . La rotation de centre Ω et d'angle θ est notée $r_{\Omega,\theta}$.

Soit \overrightarrow{u} un vecteur de \mathcal{P} . La translation de vecteur \overrightarrow{u} est notée $t_{\overrightarrow{u}}$.

- I. Question de cours. Soient θ un nombre réel non congru à 0 modulo 2π , Ω un point de \mathcal{P} et \overrightarrow{u} un vecteur de \mathcal{P} . L'affixe de Ω est notée ω et l'affixe de \overrightarrow{u} est notée $z_{\overrightarrow{u}}$. Soit M un point de \mathcal{P} , d'affixe z. Déterminer l'affixe z' de l'image de M par $t_{\overrightarrow{u}}$. Déterminer l'affixe z'' de l'image de M par $r_{\Omega,\theta}$.
- II. Soient a un nombre complexe de module 1 et b un nombre complexe. On considère l'application f de \mathcal{P} dans lui-même qui a tout point d'affixe z associe le point d'affixe az + b.
 - 1. Montrer que si a=1, alors f est une translation dont on précisera le vecteur.
 - **2.** On suppose dans cette question que $a \neq 1$.
 - a. Montrer que f possède un unique point fixe Ω dont on précisera l'affixe ω .
 - **b.** Montrer que l'image par f du point M d'affixe z est le point d'affixe

$$a(z-\omega)+\omega$$
.

- c. Montrer que f est une rotation dont on précisera le centre et l'angle.
- III. Soient a_1 et a_2 deux nombres complexes de module 1 et b_1 et b_2 deux nombres complexes. On considère l'application f_1 , respectivement f_2 , de \mathcal{P} dans lui-même, envoyant le point d'affixe z sur le point d'affixe $a_1z + b_1$, respectivement $a_2z + b_2$.
 - **1.** Soit $f = f_1 \circ f_2$. Pour tout point M d'affixe z, calculer l'affixe de f(M).
 - **2.** Montrer que f est une translation ou une rotation.
- IV. Soient r_1 la rotation de centre d'affixe 1 et d'angle $\frac{\pi}{2}$ et r_2 la rotation de centre d'affixe 0 et d'angle $-\frac{\pi}{2}$. Déterminer la nature et les éléments caractéristiques de $r_1 \circ r_2$ et $r_2 \circ r_1$.

V. On considère l'ensemble G formé des rotations de \mathcal{P} et des translations de \mathcal{P} . Montrer que G est un groupe pour une loi que l'on précisera.

Partie B: une construction géométrique

On se place de nouveau dans le plan euclidien orienté \mathcal{P} . On a montré dans la partie précédente que, sous certaines conditions, la composée de deux rotations est une rotation. On cherche ici à construire le centre de cette rotation.

Notations.

Soit \mathcal{D} une droite de \mathcal{P} . La symétrie orthogonale d'axe \mathcal{D} est notée $s_{\mathcal{D}}$. Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs non nuls de \mathcal{P} , on note $(\overrightarrow{u}, \overrightarrow{v})$ l'angle orienté de \overrightarrow{u} et \overrightarrow{v} .

- VI. Soient \mathcal{D}_1 et \mathcal{D}_2 deux droites du plan, sécantes en un point Ω . On désigne par $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ des vecteurs directeurs de \mathcal{D}_1 et \mathcal{D}_2 , respectivement. On considère l'application $f = s_{\mathcal{D}_2} \circ s_{\mathcal{D}_1}$.
 - 1. Montrer que Ω est un point fixe de f.
 - 2. Soit M un point de \mathcal{P} distinct de Ω . Soient $M' = s_{\mathcal{D}_1}(M)$ et $M'' = s_{\mathcal{D}_2}(M')$. Montrer que les angles $(\overrightarrow{\Omega M}, \overrightarrow{u_1})$ et $(\overrightarrow{u_1}, \overrightarrow{\Omega M'})$ sont égaux. On montrerait de même que les angles $(\overrightarrow{\Omega M'}, \overrightarrow{u_2})$ et $(\overrightarrow{u_2}, \overrightarrow{\Omega M''})$ sont égaux.
 - **3.** Montrer que $(\overrightarrow{\Omega M}, \overrightarrow{\Omega M''}) \equiv 2(\overrightarrow{u_1}, \overrightarrow{u_2})[2\pi]$.
 - **4.** Montrer que $\Omega M = \Omega M' = \Omega M''$.
 - 5. Montrer que f est une rotation dont on précisera le centre et l'angle.
- VII. Soient r_1 et r_2 deux rotations, de centres respectifs Ω_1 et Ω_2 et d'angles respectifs θ_1 et θ_2 . On suppose $\Omega_1 \neq \Omega_2$.
 - 1. Déterminer deux droites \mathcal{D}_1 et \mathcal{D}_2 telles que $r_1 = s_{\mathcal{D}_1} \circ s_{(\Omega_1 \Omega_2)}$ et $r_2 = s_{(\Omega_1 \Omega_2)} \circ s_{\mathcal{D}_2}$.
 - **2.** Montrer que $r_1 \circ r_2 = s_{\mathcal{D}_1} \circ s_{\mathcal{D}_2}$.
 - 3. On suppose \mathcal{D}_1 et \mathcal{D}_2 sécantes en un point Ω . Montrer qu'alors $r_1 \circ r_2$ est une rotation dont on précisera le centre et l'angle.
 - **4.** Donner une construction à la règle et au compas du centre de la rotation $r_1 \circ r_2$ lorsque r_1 est la rotation de centre d'affixe i et d'angle $\frac{\pi}{2}$ et r_2 est la rotation de centre O et d'angle $\frac{\pi}{3}$.
 - **5.** Que se passe t-il si \mathcal{D}_1 et \mathcal{D}_2 sont parallèles?

Partie C: structure des quaternions

Soient a et b deux nombres complexes. On note M(a,b) la matrice complexe suivante :

$$M(a,b) = \begin{pmatrix} a & -b \\ \overline{b} & \overline{a} \end{pmatrix}.$$

Une matrice $M \in \mathcal{M}_2(\mathbb{C})$ de la forme M(a,b) est appelée un quaternion. On considère en particulier les quaternions suivants :

$$E = M(1,0),$$
 $I = M(i,0),$ $J = M(0,1),$ $K = M(0,i).$

On veillera à ne pas confondre la matrice I=M(i,0) avec la matrice identité d'ordre 2, $I_2=E$.

On note $\mathbb{H} = \{ M(a,b) \mid (a,b) \in \mathbb{C}^2 \}.$

- VIII. 1. Donner sans justification une base du \mathbb{C} -espace vectoriel $\mathcal{M}_2(\mathbb{C})$ puis une base du \mathbb{R} -espace vectoriel $\mathcal{M}_2(\mathbb{C})$.
 - **2.** Montrer que \mathbb{H} est un sous-espace vectoriel du \mathbb{R} -espace vectoriel $\mathcal{M}_2(\mathbb{C})$, dont une base est (E, I, J, K).
 - En conséquence, tout quaternion q s'écrit de manière unique q=xE+yI+zJ+tK, avec $x,y,z,t\in\mathbb{R}$.
 - **3.** Pour a, b, a', b' des nombres complexes, calculer M(a, b)M(a', b'). En déduire que \mathbb{H} est stable par la multiplication matricielle.
 - IX. 1. Calculer les produits deux à deux des matrices E, I, J et K. On présentera les résultats dans un tableau à double entrée.
 - **2.** La multiplication dans \mathbb{H} est-elle commutative?
 - **X.** Montrer que tout quaternion q = M(a, b) avec $(a, b) \in \mathbb{C}^2 \setminus \{(0, 0)\}$, est un élément de $GL_2(\mathbb{C})$ dont l'inverse q^{-1} est un quaternion.
 - **XI.** Montrer que $\{q \in \mathbb{H} \mid \forall r \in \mathbb{H}, qr = rq\} = \{xE \mid x \in \mathbb{R}\}.$

Partie D : conjugué, parties réelle et imaginaire d'un quaternion

Soit $q=xE+yI+zJ+tK\in\mathbb{H}$, avec $x,y,z,t\in\mathbb{R}$. On définit le quaternion conjugué de q, noté q^* , par :

$$q^* = xE - yI - zJ - tK.$$

On définit la partie réelle de q, notée $\Re(q)$, par $\Re(q) = xE$.

On définit la partie imaginaire de q, notée $\mathcal{I}m(q)$, par $\mathcal{I}m(q) = yI + zJ + tK$.

On définit l'ensemble des quaternions purs, noté \mathbb{H}_{pur} , par $\mathbb{H}_{pur} = \{q \in \mathbb{H} \mid \mathcal{R}e(q) = 0\}$.

- XII. 1. Soit q un quaternion. Montrer que q^* est la transposée de la matrice obtenue en conjugant tous les coefficients de q.
 - **2.** En déduire que, pour tous quaternions $q, r, (qr)^* = r^*q^*$.
- **XIII.** Pour tout quaternion q, on pose $N(q) = qq^*$.
 - 1. Montrer que, pour tout quaternion q = xE + yI + zJ + tK, avec $x, y, z, t \in \mathbb{R}$, $N(q) = (x^2 + y^2 + z^2 + t^2)E$.
 - **2.** Montrer que, pour tous quaternions q, r, N(qr) = N(q)N(r).

Partie E : norme sur \mathbb{H}

On admet qu'on définit une norme euclidienne sur $\mathbb H$ de la façon suivante :

$$\left\{ \begin{array}{ll} \mathbb{H} & \longrightarrow & \mathbb{R} \\ q = xE + yI + zJ + tK & \mapsto & ||q|| = \sqrt{x^2 + y^2 + z^2 + t^2} \end{array} \right.$$

XIV. Quel est le produit scalaire associé à cette norme euclidienne?

- **XV.** 1. Montrer que, pour tout quaternion q, $N(q) = ||q||^2 E$.
 - **2.** En déduire que, pour tous quaternions $q, r, ||qr|| = ||q|| \times ||r||$.
 - **3.** En déduire que pour tout quaternion non nul q, $||q^{-1}|| = \frac{1}{||a||}$.

XVI. On considère l'application suivante :

$$\psi: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{H}_{pur} \\ \overrightarrow{q} = (y, z, t) & \mapsto & q = yI + zJ + tK. \end{array} \right.$$

Le quaternion pur $\psi(\overrightarrow{q})$ est appelé quaternion pur associé au vecteur \overrightarrow{q} . L'espace \mathbb{R}^3 est muni de sa structure euclidienne canonique et est supposé orienté. Son produit scalaire est noté $\langle \cdot | \cdot \rangle$. De plus, \mathbb{H}_{pur} est muni de la structure euclidienne induite par celle de \mathbb{H} .

1. Montrer que ψ est une isométrie, c'est-à-dire que pour tout $\overrightarrow{q} \in \mathbb{R}^3$,

$$||\psi(\overrightarrow{q})|| = ||\overrightarrow{q}||.$$

- **2.** Soient $q_1, q_2 \in \mathbb{H}_{pur}$, respectivement associés aux vecteurs $\overrightarrow{q_1}$ et $\overrightarrow{q_2}$. Montrer que $\mathcal{R}e(q_1q_2) = -\langle \overrightarrow{q_1} \mid \overrightarrow{q_2} \rangle E$ et que $\mathcal{I}m(q_1q_2) = \psi(\overrightarrow{q_1} \wedge \overrightarrow{q_2})$, où $\overrightarrow{q_1} \wedge \overrightarrow{q_2}$ désigne le produit vectoriel des vecteurs $\overrightarrow{q_1}$ et $\overrightarrow{q_2}$.
- **3.** Soit $q \in \mathbb{H}_{pur}$. Calculer $\mathcal{R}e(q^2)$ et $\mathcal{I}m(q^2)$. En déduire q^2 .
- **4.** Soient $(a, b, c, d) \in \mathbb{R}^4$ et $q \in \mathbb{H}_{pur}$. Calculer (aE + bq)(cE + dq).
- **5.** Soient q_1 et q_2 deux quaternions purs, respectivement associés aux vecteurs $\overrightarrow{q_1}$ et $\overrightarrow{q_2}$. Montrer que $\langle \overrightarrow{q_1} \mid \overrightarrow{q_2} \rangle = 0$ si et seulement si $q_1q_2 + q_2q_1 = 0$.

Partie F: quaternions unitaires et rotations vectorielles

On note $U=\{q\in\mathbb{H}\mid N(q)=E\}$. Les éléments de U sont appelés quaternions unitaires.

XVII. Montrer que U est un sous-groupe de $GL_2(\mathbb{C})$.

XVIII. Soit $p \in U$.

1. Montrer qu'il existe un nombre réel θ et un quaternion $u \in U \cap \mathbb{H}_{pur}$ tel que

$$p = \cos(\theta)E + \sin(\theta)u.$$

2. Vérifier que $p^{-1} = p^* = \cos(\theta)E - \sin(\theta)u$.

XIX. Soit $p \in U$. On définit l'application suivante :

$$r_p: \left\{ \begin{array}{ccc} \mathbb{H} & \longrightarrow & \mathbb{H} \\ q & \mapsto & pqp^{-1}. \end{array} \right.$$

- 1. Montrer que r_p est une application linéaire.
- **2.** Montrer que pour tout $q \in \mathbb{H}$, $||r_p(q)|| = ||q||$.
- **3.** Soient p_1 et p_2 deux éléments de U. Montrer que $r_{p_1} \circ r_{p_2} = r_{p_1p_2}$. En déduire que pour tout $p \in U$, r_p est une bijection d'inverse $r_{p^{-1}}$.
- **4.** Montrer que r_p est égale à l'identité de \mathbb{H} si et seulement si p = E ou p = -E.
- **5.** Soient p_1 et p_2 deux quaternions unitaires. Déduire de la question précédente que $r_{p_1} = r_{p_2}$ si et seulement si $p_1 = p_2$ ou $p_1 = -p_2$.

4

- XX. On suppose maintenant que p est un quaternion unitaire différent de E et de -E. D'après la question ?? ??, le quaternion p s'écrit sous la forme $p = \cos(\theta)E + \sin(\theta)u$, où θ est un nombre réel u est un quaternion pur unitaire. On associe à u le vecteur \overrightarrow{u} par l'application ψ définie dans la question ψ définie dans la question ?? Soit \overrightarrow{v} un vecteur unitaire de \mathbb{R}^3 orthogonal à \overrightarrow{u} . On pose $\overrightarrow{w} = \overrightarrow{u} \wedge \overrightarrow{v}$. On note v et w les quaternions purs associés aux vecteurs \overrightarrow{v} et \overrightarrow{w} .
 - 1. Que peut-on dire de la famille $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$?
 - 2. Montrer que uv = -vu = w, uw = -wu = -v, $u^2 = -E$ et que $u^3 = -u$.
 - **3.** Calculer $r_p(u)$, $r_p(v)$ et $r_p(w)$.
 - **4.** Montrer qu'il existe une rotation vectorielle de \mathbb{R}^3 notée R, dont on précisera l'axe et l'angle, telle que pour tout $q \in \mathbb{H}_{pur}$, si $q = \psi(\overrightarrow{q})$, alors $r_p(q) = \psi(R(\overrightarrow{q}))$.
- **XXI.** Soit R une rotation vectorielle de l'espace euclidien \mathbb{R}^3 , d'axe la droite D dirigée par un vecteur unitaire \overrightarrow{d} et d'angle ϕ . Montrer qu'il existe $p \in U$ tel que pour tout $q \in \mathbb{H}_{pur}$, si $q = \psi(\overrightarrow{q})$, alors $r_p(q) = \psi(R(\overrightarrow{q}))$.
- **XXII.** Application. Soient R_1 la rotation vectorielle de \mathbb{R}^3 d'angle $\frac{2\pi}{3}$ et d'axe engendré par (1,-1,-1) et R_2 la rotation vectorielle de \mathbb{R}^3 d'angle π et d'axe engendrée par (0,1,0). Montrer que $R_2 \circ R_1$ et $R_1 \circ R_2$ sont des rotations dont on précisera les axes et les angles.

Problème n° 2

Notations.

On désigne par \mathbb{N} l'ensemble des entiers naturels, par \mathbb{N}^* l'ensemble des entiers naturels non nuls et par \mathbb{R} l'ensemble des nombres réels.

Soit $(\Omega, \mathcal{B}, \mathbb{P})$ un espace probabilisé. Si A et B sont deux événements de Ω avec B de probabilité non nulle, la probabilité conditionnelle de A sachant que B est réalisé est notée $\mathbb{P}_B(A)$. Soient k et n des entiers naturels, avec $0 \le k \le n$. Le coefficient binomial donnant le nombre de parties à k éléments est noté $\binom{n}{k}$.

On utilisera la convention $0^0 = 1$ dans tout le problème.

Partie A : quelques études de séries

I. 1. Montrer que, pour tout entier naturel n et tout nombre réel x différent de 1,

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}.$$

- 2. En déduire, pour tout entier naturel n non nul et tout nombre réel x différent de 1, une expression de $\sum_{k=1}^{n} kx^{k-1}$.
- 3. Soit $x \in]-1$; 1[. En déduire la convergence de la série $\sum_{n\geq 1} nx^{n-1}$ et donner la valeur de sa somme.
- II. Soit k un entier naturel. On considère la série entière

$$S_k(x) = \sum_{n=k}^{+\infty} \binom{n}{k} x^{n-k}.$$

- 1. Calculer le rayon de convergence de $S_k(x)$.
- **2.** Montrer que S_k est dérivable sur]-1; 1[et que, pour tout $x\in]-1$; 1[,

$$S'_{k}(x) = (k+1)S_{k+1}(x).$$

3. Montrer par récurrence que, pour tout $k \in \mathbb{N}$ et pour tout $x \in]-1;1[$,

$$S_k(x) = \frac{1}{(1-x)^{k+1}}.$$

4. Soit $x \in]-1$; 1[. Justifier la convergence de la série $\sum_{n \geq 1} n^2 x^{n-1}$ et montrer que

$$\sum_{n=1}^{+\infty} n^2 x^{n-1} = \frac{x+1}{(1-x)^3}.$$

Indication : on pourra écrire n^2 en fonction de $\binom{n}{1}$ et de $\binom{n}{2}$.

6

III. Application : soit (Ω, \mathcal{A}, P) un espace probabilisé. Soit p un réel de]0; 1[. Soit X une variable aléatoire discrète suivant la loi géométrique de paramètre p, c'est-à-dire une variable aléatoire définie sur Ω , telle que

$$X(\Omega) = \mathbb{N}^* \text{ et } \forall k \in \mathbb{N}^*, \ \mathbb{P}(X = k) = p(1 - p)^{k-1}.$$

- 1. Montrer que X admet une espérance et la calculer.
- 2. Montrer que X^2 admet une espérance et la calculer.
- **3.** Montrer que X admet une variance et la calculer.

Partie B : étude d'une séance de tir à l'arc

On considère deux archers A_1 et A_2 qui tirent chacun sur une cible de manière indépendante. L'archer A_1 (respectivement A_2) touche sa cible avec une probabilité p_1 (respectivement p_2) strictement comprise entre 0 et 1. On suppose de plus que les tirs des joueurs sont indépendants les uns des autres. On appelle X_1 (respectivement X_2) la variable aléatoire donnant le nombre de tirs nécessaires à l'archer A_1 (respectivement A_2) pour qu'il touche sa cible pour la première fois. On note $q_1 = 1 - p_1$ et $q_2 = 1 - p_2$.

- IV. Déterminer les valeurs possibles prises par X_1 .
- **V.** On introduit, pour tout entier naturel non nul i, l'événement E_i : « le joueur A_1 touche la cible à son i-ème tir ».

Exprimer, pour tout $k \in \mathbb{N}^*$, l'événement $(X_1 = k)$ à l'aide des événements E_i , $i \in \mathbb{N}^*$.

- **VI.** En déduire la loi de X_1 .
- **VII.** 1. Pour tout entier naturel non nul k, calculer $\mathbb{P}(X_1 > k)$.
 - 2. Montrer que

$$\forall (m,n) \in \mathbb{N}^* \times \mathbb{N}^*, \ \mathbb{P}_{(X_1 > m)}(X_1 > n + m) = \mathbb{P}(X_1 > n).$$

- **VIII.** Calculer $\mathbb{P}(X_1 = X_2)$.
 - **IX.** Calculer $\mathbb{P}(X_1 > X_2)$.
 - **X.** Que vaut $\mathbb{P}(X_2 > X_1)$?
 - XI. On réalise à présent une deuxième expérience avec les deux archers A_1 et A_2 de la manière suivante : l'archer A_1 tire jusqu'à ce qu'il touche sa cible. On appelle X_1 la variable aléatoire donnant le nombre de tirs effectués par le joueur A_1 pour qu'il touche sa cible pour la première fois. Ensuite, si X_1 prend la valeur n, l'archer A_2 effectue n tirs en direction de sa cible dans les mêmes conditions que la première expérience. On définit alors la variable aléatoire G égale au nombre de fois où la cible a été touchée par l'archer A_2 . On suppose dans cette partie que $p_1 = p_2$ et on note

$$p = p_1 = p_2,$$
 $q = 1 - p_1 = 1 - p_1 = 1 - p_2.$

- **1.** Soient $n \in \mathbb{N}^*$ et $k \in \mathbb{N}$. Déterminer la probabilité conditionnelle $\mathbb{P}_{(X_1=n)}(G=k)$. On distinguera les cas k > n et $k \leq n$.
- **2.** Montrer que, pour tout $k \in \mathbb{N}$, $\mathbb{P}(G = k) = q^{k-1}p^{k+1}\sum_{n=k}^{+\infty} \binom{n}{k}q^{2n-2k}$.

3. En utilisant la partie **A.**, montrer que, pour tout $k \in \mathbb{N}$,

$$\mathbb{P}(G=k) = \left(\frac{q}{1+q}\right)^{k-1} \times \frac{1}{(1+q)^2}.$$

4. Montrer que G admet une espérance et que celle-ci vaut 1. Interpréter ce résultat.

Partie C: étude d'une variable discrète sans mémoire

Soit Y une variable aléatoire discrète, à valeurs dans \mathbb{N} telle que pour tout entier naturel n, $\mathbb{P}(Y \ge n) > 0$.

On suppose également que Y est sans mémoire c'est-à-dire qu'elle vérifie :

$$\forall (m,n) \in \mathbb{N} \times \mathbb{N}, \ \mathbb{P}_{(Y \geqslant m)}(Y \geqslant n+m) = \mathbb{P}(Y \geqslant n).$$

On pose $\mathbb{P}(Y=0) = p$ et q = 1 - p.

XII. Montrer que $\mathbb{P}(Y \geqslant 1) = q$. En déduire que $0 < q \leqslant 1$.

XIII. Montrer que pour tout couple (m, n) d'entiers naturels,

$$\mathbb{P}(Y \geqslant n + m) = \mathbb{P}(Y \geqslant m)\mathbb{P}(Y \geqslant n).$$

XIV. Pour tout entier naturel n, on pose $u_n = \mathbb{P}(Y \ge n)$.

- 1. Montrer que la suite (u_n) est géométrique et préciser sa raison.
- **2.** Pour tout entier naturel n, exprimer $\mathbb{P}(Y \ge n)$ en fonction de n et de q.
- **3.** Montrer que pour tout entier naturel n, $\mathbb{P}(Y=n) = \mathbb{P}(Y \ge n) \mathbb{P}(Y \ge n+1)$.
- **4.** En déduire que, pour tout $n \in \mathbb{N}$, $\mathbb{P}(Y = n) = q^n p$.
- **5.** En déduire que q est différent de 1.
- **XV.** Reconnaître la loi suivie par la variable aléatoire Y + 1.
- **XVI.** Conclure que Y est sans mémoire si et seulement si Y+1 est une variable aléatoire de loi géométrique de paramètre $p \in]0;1[$.

Partie D: taux de panne d'une variable discrète

Soit Z une variable aléatoire à valeurs dans \mathbb{N} telle que, pour tout entier naturel n,

$$\mathbb{P}(Z \geqslant n) > 0.$$

Soit $n \in \mathbb{N}$. On appelle taux de panne de Z à l'instant n, le réel noté λ_n défini par

$$\lambda_n = \mathbb{P}_{(Z \geqslant n)}(Z = n).$$

8

XVII. 1. Montrer que, pour tout entier naturel n,

$$1 - \lambda_n = \frac{\mathbb{P}(Z \geqslant n+1)}{\mathbb{P}(Z \geqslant n)}.$$

2. Vérifier alors que, pour tout entier naturel n, on a $0 \le \lambda_n < 1$.

3. Montrer que, pour tout entier naturel n non nul,

$$\mathbb{P}(Z \geqslant n) = \prod_{k=0}^{n-1} (1 - \lambda_k).$$

XVIII. 1. Montrer que, pour tout entier naturel n non nul,

$$\sum_{k=0}^{n-1} \mathbb{P}(Z=k) = 1 - \mathbb{P}(Z \geqslant n).$$

- **2.** En déduire que $\lim_{n\to\infty} \mathbb{P}(Z\geqslant n)$ existe et vaut 0.
- 3. Quelle est la nature de la série $\sum_{n>0} \ln(1-\lambda_n)$?
- **4.** Que dire alors de la nature de la série $\sum_{n\geq 0} \lambda_n$?
- **XIX.** On suppose maintenant qu'il existe un nombre réel c tel que pour tout $n \in \mathbb{N}$, $\lambda_n = c$. Ce réel est appelé taux de panne de Z.
 - 1. Montrer que $0 \leqslant c < 1$.
 - **2.** Pour tout entier naturel n, exprimer $\mathbb{P}(Z \ge n)$ en fonction de c et de n.
 - **3.** Montrer que c est non nul.
 - 4. En déduire une caractérisation des variables aléatoires ayant un taux de panne constant.