Thème : Intégration Calculs de volumes usuels à l'aide du calcul intégral

1. L'exercice proposé au candidat

 \mathcal{C} est l'arc de courbe représentant, pour $x \in [\alpha, \beta]$ ($\alpha < \beta$), une fonction f de la forme $f(x) = \sqrt{P(x)}$ où P désigne une fonction polynôme du second degré, strictement positive sur $[\alpha, \beta]$. La rotation de \mathcal{C} autour de l'axe Ox engendre un solide de révolution dont on désire calculer le volume V. On note B_1 et B_2 les aires des bases du solide et B_3 l'aire de la section du solide par le plan équidistant des plans des bases. On note h le réel $\beta - \alpha$.

- 1) Montrer que $V = \frac{h}{6}(B_1 + B_2 + 4B_3)$.
- 2) Une tour de condenseur a une hauteur H=48m. Sa base circulaire a un rayon R_1 , son orifice supérieur un rayon R_2 . Son volume peut être considéré comme le volume du solide de révolution engendré par la rotation autour d'un axe x'Ox du domaine plan délimité par l'arc AB d'équation

$$y = 12\sqrt{1 + \frac{x^2}{24}},$$

les droites d'équations x = -36, x = 12 et l'axe x'x. Calculez le volume V à un mètre cube près.

1 Travail demandé au candidat

En aucun cas le candidat ne doit rédiger sur sa fiche sa solution de l'exercice. Celle-ci pourra néanmoins lui être demandée partiellement ou en totalité lors de l'entretien avec le jury.

Après avoir résolu et analysé cet exercice :

- 1. Que peut-on ajouter à l'énoncé pour le rendre plus clair ?
- 2. Quel est le lien entre la question 1 et la question 2 ? Proposer une nouvelle version du même exercice dans laquelle l'ordre des questions est inversé. Comparer.
- 3. Discuter la formulation de la question 2.
- 4. Proposer un autre exercice sur ce thème.