Thème : Intégration. Calcul d'intégrales par des méthodes variées

1. L'exercice proposé au candidat

On considère la fonction F définie sur $[0, +\infty[$ par $F(x) = \int_0^x \frac{1}{\sqrt{1+t^2}} dt$.

- 1) Montrer que F est continue et strictement croissante sur $[0, +\infty[$. On considère la fonction u définie sur $[0, +\infty[$ par $u(x) = \frac{e^x - e^{-x}}{2}$.
- 2) a) Calculer la dérivée de la fonction $F \circ u$.
 - b) En déduire que, pour tout réel $x \in [0, +\infty[$, on a $F \circ u(x) = x$.
 - c) Calculer F(2).

2. Le travail demandé au candidat

En aucun cas, le candidat ne doit rédiger sur sa fiche sa solution de l'exercice. Celle-ci pourra néanmoins lui être demandée partiellement ou en totalité lors de l'entretien avec le jury.

Pendant sa préparation, le candidat traitera les questions suivantes :

- Q.1) Préciser les théorèmes utilisés dans cet exercice.
- Q.2) Proposer une solution de la question 2) telle que le candidat la présenterait à une classe.

Sur ses fiches, le candidat rédigera et présentera :

- ♦ Sa réponse à la question Q.2).
- ⋄ L'énoncé d'un ou plusieurs exercices sur le thème « Calcul d'intégrales par des méthodes variées ».

3. Quelques références aux programmes

Classe de Terminale S

Contenus	Modalités de mise en œuvre	Commentaires
Langage de la continuité et tableau de variations		
Théorème (dit des valeurs intermédiaires): « soient f une fonction définie et continue sur un intervalle I et a et b deux réels dans I . Pour tout réel k compris entre $f(a)$ et $f(b)$, il existe un réel c compris entre a et b tel que $f(c) = k$ ».	Ce théorème pourra être admis ou démontré à l'aide de suites adjacentes. On démontrera le corollaire suivant : « Si f est une fonction continue strictement monotone sur $[a;b]$, alors, pour tout réel k compris entre $f(a)$ et $f(b)$, l'équation $f(x) = k$ a une solution unique dans $[a;b]$. » On étendra ce corollaire au cas où f est définie sur un intervalle ouvert ou semi-ouvert, borné ou non, les limites de f aux bornes de l'intervalle étant supposées connues. On pourra approcher la solution de l'équation $f(x) = k$ par dichotomie ou balayage avec la calculatrice ou au tableur.	On conviendra, dans les tableaux de variations, que les flèches obliques traduisent la continuité et la stricte monotonie de la fonction sur l'intervalle considéré. Dans la rédaction de la solution à un problème, une simple référence au tableau de variations suffira pour justifier l'existence et l'unicité d'une solution d'une équation du type $f(x) = k$.
Dérivation		
Dérivation d'une fonction composée	Le principe de la démonstration sera indiqué. La notation différentielle est ici un moyen mnémotechnique de retrouver la formule.	À l'occasion des exercices, on rencontre des relations entre grandeurs de la forme $x=f(t), y=g(x), v=u(t)$, etc., où t représente un temps, x et y des longueurs, v une vitesse : dans ces conditions, $f'(t)$ est une vitesse, $g'(x)$ est un nombre et $u'(t)$ est une accélération, ce que l'ecriture différentielle met en valeur.
Intégration et dérivation		
Notion de primitive Théorème : Si f est continue sur un intervalle I , et si a est un point de I , la fonction F telle que $F(x) = \int_a^x f(t) \mathrm{d}t$ est l'unique primitive de f sur I s'annulant en a .	On démontrera que F est une primitive de f dans le cas où f est continue et croissante, et on admettra le cas général.	L'intégration permet d'établir l'existence des primitives des fonctions continues et d'en donner des méthodes numériques de calcul; inversement, la connaissance d'une primitive d'une fonction continue donne une formule explicite pour le calcul des intégrales : les élèves devront percevoir l'intérêt de cette double démarche.